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Abstract
A generalization of the matrix Jaynes–Cummings model in the rotating wave
approximation is proposed by means of the shape-invariant hierarchies of scalar
factorized Hamiltonians. A class of Darboux transformations (sometimes
called SUSY transformations in this context) suitable for these generalized
Jaynes–Cummings models is constructed. Finally one example is worked out
using the methods developed.

PACS numbers: 03.65.−w, 11.30.Pb, 42.50.−p

1. Introduction

The Darboux transformation is a very useful technique in areas like supersymmetric (SUSY)
quantum mechanics [1] and nonlinear equations [2]. In particular, there are many works
in the literature concerning the one-dimensional problems in quantum mechanics for scalar
wavefunctions [1, 3–5]. However, it is not so well studied in the context of matrix wave
equations of Schrödinger type. Some developments of this theory have been made [6–8], but
it is not easy to find good examples in the matrix case since, once a known initial Hamiltonian
is fixed, the hermiticity of the partner Hamiltonian is a property difficult to guarantee.

One interesting physical example was given for a Pauli equation of a spin-1/2 neutral
particle, where it was shown that for the radial equation the Darboux transformations lead to
matrix shape invariance as well as to many other algebraic properties (see [9] and references
therein).

Another physical case of a matrix Hamiltonian of Schrödinger type is the Jaynes–
Cummings (J-C) Hamiltonian describing the interaction between a two-level atom and a
quantized single-mode electromagnetic field, in the rotating wave approximation [10]. There
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have been many studies of this model (see for instance [11]) as well as many variations
[12–14]. An application of Darboux transformations to the J-C model was presented in [15].

In this work we want to define a new class of J-C Hamiltonians with the help of shape-
invariant scalar Hamiltonian hierarchies [16] in the line of [17]. In this way, we propose to
show that many particular properties previously worked out in [15] have a simple explanation
and also a more general character. We have also tried to make a self-contained work easy to
follow by any reader familiar with the techniques of SUSY quantum mechanics.

The organization of the paper is as follows. We first introduce, in section 2, a new class
of generalized J-C Hamiltonians and we study its spectrum. In section 3, we determine the
matrix Darboux transformations suitable for this class of Hamiltonians, and examine three
cases, leading to Hermitian SUSY partner Hamiltonians. The Darboux transformations of
second order are also considered. In section 4, these transformations are applied to the
generalized J-C Hamiltonian obtained from the radial oscillator hierarchy. Finally, we end the
paper with some conclusions and remarks.

2. Generalized J-C Hamiltonians

We start from a class of factorized shape-invariant one-dimensional Hamiltonian hierarchy
{H�}, � ∈ Z, in the sense given for instance in [3, 16]. This hierarchy is obtained with the help
of a sequence of first-order differential operators

A±
� = ∓∂x + f (x, �), (1)

where ∂x = d/dx, and f (x, �) are certain functions, with the conditions

H� = A+
�A

−
� + λ� = A−

�−1A
+
�−1 + λ�−1, (2)

with λ� being constants depending only on �. The equation

A−
� ψ0

� = 0 (3)

determines a square-integrable wavefunction that is the ground state of H� with energy
E0

� = λ�. The excited states of H� with energy En
� = λ�+n, n = 0, 1, 2, . . . , are obtained by

means of the raising operators

ψn
� = A+

�A
+
�+1 . . . A+

�+n−1ψ
0
�+n. (4)

This Hamiltonian hierarchy satisfies the intertwining relations

A−
� H� = H�+1A

−
� , A+

�H�+1 = H�A
+
� . (5)

This means that

A−
� ψn

� ∝ ψn−1
�+1 , A+

�ψ
n−1
�+1 ∝ ψn

� , (6)

where we can easily find the proportionality factors. Indeed, we have〈
A−

� ψn
� , A−

� ψn
�

〉 = 〈
ψn

� ,A+
�A

−
� ψn

�

〉 = (λ�+n − λ�)
〈
ψn

� , ψn
�

〉
, (7)

and, in a similar way,〈
A+

�ψ
n−1
�+1 , A+

�ψ
n−1
�+1

〉 = (λ�+n − λ�)
〈
ψn−1

�+1 , ψn−1
�+1

〉
. (8)

Therefore we can write, up to a phase, the action of the lowering and raising operators on the
physical square-integrable eigenfunctions

A+
�ψ

n−1
�+1 =

√
λ�+n − λ�ψ

n
� , A−

� ψn
� =

√
λ�+n − λ�ψ

n−1
�+1 . (9)
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By making use of the above hierarchy, we propose the following J-C type Hamiltonian:

H =
(

H�+1 + α βA−
�

βA+
� H�

)
, (10)

which can also be rewritten as

H = (
A+

�A
−
� + λ�

)
σ0 + 1

2

([
A−

� , A+
�

]
+ α

)
(σ3 + 1) + β

(
A−

� σ+ + A+
�σ−

)
, (11)

where α and β are real constants, σ0 is the identity matrix, σi, i = 1, 2, 3, are the Pauli
matrices, and σ± = (σ1 ± iσ2)/2. This model is quite similar to that studied in [17]. Now
we can compute explicitly the eigenvalues E and the two-component eigenfunctions � of this
matrix Hamiltonian. Next we will consider three sets of eigenfunctions.

2.1. Physical eigenfunctions

As the Hamiltonian H commutes with the operator

N =
(

H�+1 0

0 H�

)
, (12)

let us propose a common eigenfunction of both H and N of the form

�n =
(

c1ψ
n−1
�+1

c2ψ
n
�

)
n = 1, 2 . . . . (13)

The constants c1, c2 are to be determined from the equation

H�n = En�n, (14)

where En is also unknown. Using (10) and (13) in (14) together with (9), we obtain the matrix
equation (

λ�+n + α β
√

λ�+n − λ�

β
√

λ�+n − λ� λ�+n

)(
c1

c2

)
= En

(
c1

c2

)
. (15)

We thus get the eigenvalue solutions of our generalized J-C Hamiltonian

E±
n = 1

2

(
α + 2λ�+n ±

√
α2 + 4β2(λ�+n − λ�)

)
(16)

and the two sets of eigenfunctions

�±
n =

(
c±

1 ψn−1
�+1

c±
2 ψn

�

)
(17)

such that the coefficients c±
1 and c±

2 are related by

c±
1 = E±

n − λ�+n

β
√

λ�+n − λ�

c±
2 . (18)

2.2. Non-physical eigenfunctions

We can obtain general non-physical eigenfunctions by a slight modification of the above
procedure that will be very useful to apply Darboux transformations in the following sections.
Therefore let us consider a non-physical eigenfunction ψε

� of H� with a real eigenvalue ε

(different from λ�+n):

H�ψ
ε
� = εψε

� . (19)
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Now we propose the matrix eigenfunction of the form

�ε =
(

c1A
−
� ψε

�

c2ψ
ε
�

)
, (20)

where A−
� ψε

� �= 0, which satisfies the eigenvalue equation

H�ε = Eε�ε. (21)

After similar computations as in the previous case, we are led to the eigenvalues

E±
ε = 1

2

(
α + 2ε ±

√
α2 + 4β2(ε − λ�)

)
. (22)

The coefficients of the corresponding eigenfunctions �±
ε are related by

c±
1 = E±

ε − ε

β(ε − λ�)
c±

2 . (23)

Other expressions of non-physical eigenfunctions can be obtained by choosing the form

�ε =
(

c1ψ
ε
�+1

c2A
+
�ψ

ε
�+1

)
, (24)

where H�+1ψ
ε
�+1 = εψε

�+1 and A+
�ψ

ε
�+1 �= 0.

2.3. Fundamental eigenfunctions

Taking into account the definition of the ground state (3), we can express the functions f (x, �)

in (1) as

f (x, �) = −(
ψ0

�

)
x

/
ψ0

� , (25)

where henceforth we use a subindex x, as in
(
ψ0

�

)
x
, to express the derivative with respect to x.

We can construct from ψ0
� the physical fundamental two-component eigenfunction

�−
0 =

(
0

ψ0
�

)
, (26)

satisfying

H�−
0 = λ��

−
0 . (27)

In the same way, since

A+
�ψ

−1
�+1 = 0, (28)

where ψ−1
�+1 is a non-physical eigenfunction of H�+1, we have another expression for f (x, �):

f (x, �) = (
ψ−1

�+1

)
x

/
ψ−1

�+1. (29)

Then, we can build a second (non-physical) fundamental eigenfunction

�+
0 =

(
ψ−1

�+1

0

)
, (30)

satisfying

H�+
0 = (λ� + α)�+

0 . (31)

These two eigenfunctions and their eigenvalues can be considered as the limit of (15)–(18)
when n = 0.
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3. Darboux transformations for generalized J-C Hamiltonians

3.1. Matrix Darboux transformations

By replacing the expressions of the lowering and raising operators (1) and using (2), in the
J-C Hamiltonian (10), we get a second-order matrix differential operator of the form

H = −∂2
x + V (x) + βγ ∂x, (32)

where

V (x)=
(

f (x, �)2 + fx(x, �) + λ� + α βf (x, �)

βf (x, �) f (x, �)2 − fx(x, �) + λ�

)
, γ=

(
0 1

−1 0

)
.

(33)

Now we look for a matrix Darboux transformation

L = ∂x − W(x), (34)

W(x) being a matrix-valued function, usually called superpotential, satisfying the relation

LH = H̃L, (35)

where

H̃ = −∂2
x + Ṽ (x) + β̃γ ∂x (36)

is another Hamiltonian of the same type as (32). Given any pair of eigenfunctions �1, �2 of
H with eigenvalues E1, E2, we can build the 2 × 2 matrix

M(x) = (�1, �2) (37)

such that

HM(x) = M(x)E, (38)

where E = diag(E1, E2). Then the intertwining relation (35) implies that M̃(x) = LM(x) will
be another matrix of solutions of H̃ with the same eigenvalue matrix E:

H̃M̃(x) = M̃(x)E. (39)

Let us choose these eigenfunctions �1, �2 belonging to the kernel of L, i.e.,

LM(x) = 0. (40)

Then, it is well known [7, 8, 15] that, from the intertwining relation (35), also their images
under H will belong to that kernel, i.e., L(HM(x)) = 0. Therefore, from (40) and (34) it can
be easily seen that W(x) is given by

W(x) = Mx(x)M(x)−1. (41)

Now we can expand the intertwining relation (35) taking into account expressions (32),
(36) and (34), by equating the powers of derivatives in x to get the following results.

• Second power terms:

β = β̃. (42)

• First power terms:

Ṽ (x) = V (x) − 2Wx(x) + β[γ, W(x)]. (43)

• Zero power terms:

Wxx(x) + 2Wx(x)W(x)

+ [W(x), V (x)] − Vx(x) − β([γ, W(x)]W(x) + γ Wx(x)) = 0. (44)

The last relation is a consistency condition for the superpotential W(x). However, if we
substitute expression (41) in (44), using (32) and (38), we can check that this relation is auto-
matically satisfied. Hence any first-order operator L in the form (34) with W(x) given by (41)
is a Darboux transformation.
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3.2. Special superpotentials for J-C Hamiltonians

3.2.1. Superpotential associated with the pair of fundamental eigenfunctions. In this case,
we form the matrix M0 with the simplest solutions �±

0 , so that

M0(x) =
(

ψ−1
�+1 0

0 ψ0
�

)
. (45)

Replacing in (41) and taking into account (25) and (29) we get the superpotential

W0(x) =
((

ψ−1
�+1

)
x

/
ψ−1

�+1 0

0
(
ψ0

�

)
x

/
ψ0

�

)
=

(
f (x, �) 0

0 −f (x, �)

)
, (46)

and the Darboux operator L given in (34) takes the simple form

L0 =
(

−A+
� 0

0 A−
�

)
. (47)

The partner Hamiltonian is thus given by

H̃ =
(

H� + α −βA+
�

−βA−
� H�+1

)
. (48)

Note that in this case both the initial and partner Hamiltonians can also be expressed in terms
of the matrix Darboux operators L0 and its conjugate L

†
0 as

H = L
†
0L0 + βγL0 + λ�σ0 + 1

2α(σ3 + 1), (49)

H̃ = L0L
†
0 + βL0γ + λ�σ0 + 1

2α(σ3 + 1). (50)

Since L
†
0L0 and L0L

†
0 are symmetries, i.e., they commute with H and H̃ , respectively, S and

S̃ defined by

S = βγL0 + λ�σ0 + 1
2α(σ3 + 1), S̃ = βL0γ + λ�σ0 + 1

2α(σ3 + 1) (51)

are also first-order Hermitian symmetries of H and H̃ (a particular case of these symmetries
is given in [17]).

3.2.2. Superpotentials associated with a pair of E±-eigenfunctions. Let us choose two
physical eigenfunctions in the specific form (17) with the eigenvalues E±

n as given in (16).
Then the 2 × 2 matrix Mn(x) takes the form

Mn(x) =
(

c+
1ψn−1

�+1 c−
1 ψn−1

�+1

c+
2ψn

� c−
2 ψn

�

)
= Dn(x)Rn, (52)

where

Dn(x) =
(

ψn−1
�+1 0

0 ψn
�

)
, Rn =

(
c+

1 c−
1

c+
2 c−

2

)
. (53)

According to formula (41), the superpotential Wn(x) can be written as

Wn(x) = (Dn(x)Rn)x(Dn(x)Rn)
−1 = Dnx(x)Dn(x)−1. (54)

Hence, we get the final explicit expression for the superpotential

Wn(x) =
((

ψn−1
�+1

)
x

/
ψn−1

�+1 0

0
(
ψn

�

)
x

/
ψn

�

)
. (55)
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Therefore, by varying n ( �=0) we can produce many diagonal superpotentials. In the same
way, we can make use of other pairs of non-physical eigenfunctions �±

ε as they were given in
the previous section leading to a similar diagonal expression as (55). This is quite important
since we can choose non-physical eigenfunctions, without zeros, in order to avoid singularities
of the partner potential.

However, if we choose any other combination of eigenfunctions of H we will get a
superpotential that in general will not be diagonal nor Hermitian, leading to a non-Hermitian
partner Hamiltonian. But, there are some exceptions as we will see in the following.

3.2.3. Superpotentials associated with triangular matrix solutions. Another option that
allows us to get reasonable simple superpotentials, leading to Hermitian potentials, is obtained
if we choose a triangular matrix solution for M(x), i.e.,

M(x) =
(

0 c±
1 ψn−1

�+1

ψ0
� c±

2 ψn
�

)
. (56)

Substituting in (41) we also get a triangular superpotential

W(x) =
 (

ψn−1
�+1

)
x

/
ψn−1

�+1 0

− c±
2

c±
1

(ψ0
� )x

ψn
� −(ψn

� )x
ψ0

�

ψ0
� ψn−1

�+1

(
ψ0

�

)
x

/
ψ0

�

 . (57)

The terms with derivatives in the non-diagonal element of this matrix can be substituted as
follows. By using the differential expression (1) of A−

� , we get from (3)(
ψ0

�

)
x

= −f (x, �)ψ0
� (58)

and from (9) (
ψn

�

)
x

=
√

λn+� − λ�ψ
n−1
�+1 − f (x, �)ψn

� . (59)

Therefore, having in mind (18), the final expression for the W(x) matrix is

W(x) =
((

ψn−1
�+1

)
x
/ψn−1

�+1 0
β(λ�+n−λ�)

E±
n −λ�+n

(
ψ0

�

)
x

/
ψ0

�

)
. (60)

We must point out that when we use triangular matrices with non-physical solutions the
constant non-diagonal term in W(x) must be changed according to (23).

3.2.4. Superpotentials of second-order Darboux transformations. We can also build diagonal
second-order matrix Darboux transformations by using two matrices Mn(x) and Mm(x) with
the two sets of eigenfunctions �±

n and �±
m . Then the second-order Darboux transformation

L(2) associated with these matrices is such that

L(2)
Mn = L(2)

Mm = 0. (61)

Therefore, we can write it as

L(2) = L2L1 = (∂x − W̃m)(∂x − Wn) (62)

with

L1Mn(x) = 0, L2M̃m(x) = 0, (63)

where

M̃m(x) = L1Mm(x) = (Dmx(x) − Wn(x)Dm(x))Rm. (64)

Hence, Wn(x) is given by formula (41), while
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W̃m(x) = (Dmx(x) − Wn(x)Dm(x))x
(
Dmx(x) − Wn(x)Dm(x)

)−1

=

logx

W

(
ψn−1

�+1 ,ψm−1
�+1

)
ψn−1

�+1
0

0 logx

W

(
ψn

� ,ψm
�

)
ψn

�

 , (65)

W(ψ, φ) being the Wronskian of two functions. Now, the second-order intertwining is

L(2)H = L2L1H = L2H̃L1 = ˜̃HL2L1 = ˜̃HL(2). (66)

The action of L2 on H̃ , whose potential is given in (43), leads to the partner potential˜̃V (x) = Ṽ (x) − 2W̃mx(x) + β[γ, W̃m(x)]. (67)

Taking into account the expression of Ṽ , we arrive at˜̃V (x) = V (x) − 2 ˜̃
Wx(x) + β[γ, ˜̃

W(x)], (68)

with˜̃
W(x) = Wn(x) + W̃m(x) =

(
logx W

(
ψn−1

�+1 , ψm−1
�+1

)
0

0 logx W
(
ψn

� , ψm
�

)) . (69)

The final Hamiltonian is given by˜̃H = −∂2
x + ˜̃V (x) + βγ ∂x. (70)

4. Example: radial oscillator like J-C Hamiltonians

In this section we shall consider as an example the J-C Hamiltonians obtained by means of
the radial oscillator hierarchy given by the Hamiltonians [18]

H� = −∂2
r +

�(� − 1)

r2
+ r2 + 2�. (71)

In this case the lowering and raising operators of (1) are given by

A±
� = ∓∂r − �

r
+ r (72)

and relation (2) is fulfilled with λ� = 4� + 1. The general eigenfunctions for any eigenvalue ε

are given by [19]

ψε
� (r) = r� e−r2/2(C1 1F1((1 − ε)/4 + �, � + 1/2; r2)

+ C2r
−2�+1

1F1((3 − ε)/4,−� + 3/2; r2)). (73)

The physical eigenfunctions of (71) are obtained when C2 = 0 and the remaining
hypergeometric function is a polynomial. That is, the first argument of the function 1F1 must
be a negative integer, (1 − ε)/4 + � = −n, n = 0, 1, 2 . . . . Therefore, these eigenfunctions are

ψn
� (r) = Cr� e−r2/2

1F1(−n, � + 1/2; r2), (74)

where C is a normalization constant and the corresponding discrete energy eigenvalues are

En
� = 4(� + n) + 1. (75)

The matrix J-C potential corresponding to this hierarchy is

V (r) =
(

�(�+1)

r2 + r2 + 2(� + 1) + α β
(− �

r
+ r

)
β
(− �

r
+ r

)
�(�−1)

r2 + r2 + 2�

)
. (76)

The physical eigenfunctions of the J-C Hamiltonian with potential (76) obtained by means
of (74) will be called �±

n .
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4.1. Superpotential of fundamental solutions

The so-called fundamental eigenfunctions obtained from (3) and (28) are here

ψ0
� (r) = r� e−r2/2, ψ−1

�+1(r) = r−� er2/2. (77)

From these solutions, by using (46), we get the explicit superpotential

W0(r) =
(

− �
r

+ r 0

0 �
r

− r

)
. (78)

The new potential, in agreement with (48), is given by

Ṽ (r) =
(

�(�−1)

r2 + r2 + 2� + α β
(

�
r

− r
)

β
(

�
r

− r
)

�(�+1)

r2 + r2 + 2(� + 1)

)
. (79)

4.2. Superpotential associated with a pair of non-physical solutions

Now, in order to avoid singularities, we will choose the special non-physical eigenfunctions
in the form of (74), replacing −n by n. We use the notation �±

−n, n = 1, 2, 3, . . . , for
such non-physical eigenfunctions. Therefore, from (55) after some computations we get the
superpotential [20]

W−n(r) =
(

�+1
r

− r + h1(r) 0

0 �
r

− r + h2(r)

)
, (80)

where h1(r) = logr 1F1(n + 1, l + 3/2; r2), and h2(r) = logr 1F1(n, l + 1/2; r2). Then, after
substituting (80) in (43), using the initial potential (76) we get the partner potential

Ṽ (r)=
(

(�+1)(�+2)

r2 + r2 + 2(� + 2) + α − 2h1r (r) β
(− �+1

r
+ r + h2(r) − h1(r)

)
β
(− �+1

r
+ r + h2(r) − h1(r)

)
�(�+1)

r2 + r2 + 2(� + 1) − 2h2r (r)

)
. (81)

The corresponding partner Hamiltonian (36) with β̃ = β, when we substitute (81), has a
simple expression,

H̃ (r) =
(

H�+2 + α − 2h1r (r) β(A−
�+1 + h2(r) − h1(r))

β
(
A+

�+1 + h2(r) − h1(r)
)

H�+1 − 2h2r (r)

)
. (82)

4.3. Superpotential associated with triangular solutions

Finally, we shall take the triangular matrix (56) of the physical eigenfunctions with the solutions
given by (74), to get the superpotential

W
±(r) =

(
�+1
r

− r − h(r) 0

K± �
r

− r

)
, (83)

where [20]

K± = 8βn

α ±
√

α2 + 16β2n
, h(r) = −logr 1F1(1 − n, l + 3/2; r2). (84)



11310 V Hussin et al

Then, after substituting (83) in (43), with the initial potential (76), we get the partner potential

Ṽ ±(r) =
(

(�+1)(�+2)

r2 + r2 + 2(�+2) + α + 2hr(r) + βK± β
(− �+1

r
+ r + h(r)

)
β
(− �+1

r
+ r + h(r)

)
�(�+1)

r2 + r2 + 2(� + 1) − βK±

)
.

(85)

The corresponding partner Hamiltonian is

H̃±(r) =
(

H�+2 + α + 2hr(r) + βK± β(A−
�+1 + h(r))

β
(
A+

�+1 + h(r)
)

H�+1 − βK±

)
. (86)

In order to avoid singularities in this partner Hamiltonian we should take non-physical solutions
choosing for example the values n = −1,−2,−3 . . . , as in the previous subsection.

4.4. Superpotential and Hamiltonians associated with second-order Darboux
transformations

We will compute the second-order superpotential choosing the particular matrix solutions
Mn(r) with n = 1 and Mm(r) with m = 2. After some computations the matrix
superpotential (69) becomes

˜̃
W(r) =

(
3+2�

r
− 2r 0

0 1+2�
r

− 2r + g(r)

)
, (87)

where

g(r) = − 8r(1 + 2� − 2r2)

3 + 4�(2 + �) − 4r2(1 + 2� − r2)
. (88)

Then using formula (68) we get the partner potential

˜̃V (r) =
(

(�+2)(�+3)

r2 + r2 + 2(� + 3) + α β
(− �+1

r
+ r + g(r)

)
β
(− �+1

r
+ r + g(r)

)
(�+1)(�+2)

r2 + r2 + 2(� + 2) − 2gr(r)

)
, (89)

so that the corresponding partner Hamiltonian takes the form

˜̃H(r) =
(

H�+3 + α β(A−
�+1 + g(r))

β
(
A+

�+1 + g(r)
)

H�+2 − 2gr(r)

)
. (90)

Although the first-order partner Hamiltonian with physical eigenfunctions is singular, this
second-order partner Hamiltonian does not have any singularity but its spectrum differs from
the initial J-C Hamiltonian in that it has four levels less: those with eigenvalues E±

1 , E±
2 (see

also [21]).

5. Conclusions

In this work we have extended some methods previously used in [15] to a class of generalized
J-C Hamiltonians. In doing so we have shown some interesting properties. (i) A class
of superpotentials automatically takes a diagonal form, leading to non-trivial SUSY partner
Hamiltonians. The same happens when we take, inside the same class, higher order Darboux
tranformations. (ii) We have got a class of triangular superpotentials leading also to Hermitian
partners. At the same time these non-Hermitian superpotentials describe some symmetries
of the generalized J-C Hamiltonians. We have also carried out the computations for just one
example that, for � = 0, includes as a particular case the usual J-C Hamiltonian.
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